Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Organic photovoltaics using thin gold film as an alternative anode to indium tin oxide

Identifieur interne : 002826 ( Main/Repository ); précédent : 002825; suivant : 002827

Organic photovoltaics using thin gold film as an alternative anode to indium tin oxide

Auteurs : RBID : Pascal:11-0323254

Descripteurs français

English descriptors

Abstract

Indium Tin Oxide (ITO) is the most commonly used anode as a transparent electrode and more recently as an anode for organic photovoltaics (OPVs). However, there are significant drawbacks in using ITO which include high material costs, mechanical instability including brittleness and poor electrical properties which limit its use in low-cost flexible devices. We present initial results of poly(3-hexylthiophene): phenyl-C61-butyric acid methyl ester OPVs showing that an efficiency of 1.9% (short-circuit current 7.01 mA/cm2, open-circuit voltage 0.55 V, fill factor 0.49) can be attained using an ultra thin film of gold coated glass as the device anode. The initial I-V characteristics demonstrate that using high work function metals when the thin film is kept ultra thin can be used as a replacement to ITO due to their greater stability and better morphological control.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0323254

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Organic photovoltaics using thin gold film as an alternative anode to indium tin oxide</title>
<author>
<name sortKey="Haldar, Amrita" uniqKey="Haldar A">Amrita Haldar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for NanoEnergy, Department of Physics, University of Houston</s1>
<s2>Houston, TX 77204</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Houston, TX 77204</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yambem, Soniya D" uniqKey="Yambem S">Soniya D. Yambem</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for NanoEnergy, Department of Physics, University of Houston</s1>
<s2>Houston, TX 77204</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Houston, TX 77204</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liao, Kang Shyang" uniqKey="Liao K">Kang-Shyang Liao</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for NanoEnergy, Department of Physics, University of Houston</s1>
<s2>Houston, TX 77204</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Houston, TX 77204</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Alley, Nigel J" uniqKey="Alley N">Nigel J. Alley</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for NanoEnergy, Department of Physics, University of Houston</s1>
<s2>Houston, TX 77204</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Houston, TX 77204</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Physical Sciences, Dublin City University</s1>
<s2>Glasnevin, Dublin</s2>
<s3>IRL</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Irlande (pays)</country>
<wicri:noRegion>Glasnevin, Dublin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dillon, Eoghan P" uniqKey="Dillon E">Eoghan P. Dillon</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Richard E. Smalley Institute for Nanoscale Science and Technology, Center for Biological and Environmental Nanotechnology, Carbon Nanotube Laboratory, Rice University</s1>
<s2>Houston, Texas 77005</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Houston, Texas 77005</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Barron, Andrew R" uniqKey="Barron A">Andrew R. Barron</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Richard E. Smalley Institute for Nanoscale Science and Technology, Center for Biological and Environmental Nanotechnology, Carbon Nanotube Laboratory, Rice University</s1>
<s2>Houston, Texas 77005</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Houston, Texas 77005</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Curran, Seamus A" uniqKey="Curran S">Seamus A. Curran</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for NanoEnergy, Department of Physics, University of Houston</s1>
<s2>Houston, TX 77204</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Houston, TX 77204</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0323254</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0323254 INIST</idno>
<idno type="RBID">Pascal:11-0323254</idno>
<idno type="wicri:Area/Main/Corpus">002E38</idno>
<idno type="wicri:Area/Main/Repository">002826</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Butyric derivative polymer</term>
<term>Electrical properties</term>
<term>Glass</term>
<term>Gold</term>
<term>Indium oxide</term>
<term>Mechanical properties</term>
<term>Metallic thin films</term>
<term>Photovoltaic cell</term>
<term>Solar cell</term>
<term>Thin film</term>
<term>Thiophene derivative polymer</term>
<term>Tin oxide</term>
<term>Voltage current curve</term>
<term>Work function</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dispositif photovoltaïque</term>
<term>Couche mince métallique</term>
<term>Propriété mécanique</term>
<term>Propriété électrique</term>
<term>Butyrique dérivé polymère</term>
<term>Couche mince</term>
<term>Verre</term>
<term>Caractéristique courant tension</term>
<term>Travail sortie</term>
<term>Cellule solaire</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Thiophène dérivé polymère</term>
<term>Or</term>
<term>8460J</term>
<term>6860B</term>
<term>7350</term>
<term>7361</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Verre</term>
<term>Or</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Indium Tin Oxide (ITO) is the most commonly used anode as a transparent electrode and more recently as an anode for organic photovoltaics (OPVs). However, there are significant drawbacks in using ITO which include high material costs, mechanical instability including brittleness and poor electrical properties which limit its use in low-cost flexible devices. We present initial results of poly(3-hexylthiophene): phenyl-C
<sub>61</sub>
-butyric acid methyl ester OPVs showing that an efficiency of 1.9% (short-circuit current 7.01 mA/cm
<sup>2</sup>
, open-circuit voltage 0.55 V, fill factor 0.49) can be attained using an ultra thin film of gold coated glass as the device anode. The initial I-V characteristics demonstrate that using high work function metals when the thin film is kept ultra thin can be used as a replacement to ITO due to their greater stability and better morphological control.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>519</s2>
</fA05>
<fA06>
<s2>18</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Organic photovoltaics using thin gold film as an alternative anode to indium tin oxide</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HALDAR (Amrita)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>YAMBEM (Soniya D.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LIAO (Kang-Shyang)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ALLEY (Nigel J.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>DILLON (Eoghan P.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BARRON (Andrew R.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>CURRAN (Seamus A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute for NanoEnergy, Department of Physics, University of Houston</s1>
<s2>Houston, TX 77204</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Physical Sciences, Dublin City University</s1>
<s2>Glasnevin, Dublin</s2>
<s3>IRL</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Richard E. Smalley Institute for Nanoscale Science and Technology, Center for Biological and Environmental Nanotechnology, Carbon Nanotube Laboratory, Rice University</s1>
<s2>Houston, Texas 77005</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>6169-6173</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000190435540600</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>34 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0323254</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Indium Tin Oxide (ITO) is the most commonly used anode as a transparent electrode and more recently as an anode for organic photovoltaics (OPVs). However, there are significant drawbacks in using ITO which include high material costs, mechanical instability including brittleness and poor electrical properties which limit its use in low-cost flexible devices. We present initial results of poly(3-hexylthiophene): phenyl-C
<sub>61</sub>
-butyric acid methyl ester OPVs showing that an efficiency of 1.9% (short-circuit current 7.01 mA/cm
<sup>2</sup>
, open-circuit voltage 0.55 V, fill factor 0.49) can be attained using an ultra thin film of gold coated glass as the device anode. The initial I-V characteristics demonstrate that using high work function metals when the thin film is kept ultra thin can be used as a replacement to ITO due to their greater stability and better morphological control.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60H60B</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C50</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70C61</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Couche mince métallique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Metallic thin films</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Propriété mécanique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Mechanical properties</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Propiedad mecánica</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Propriété électrique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Electrical properties</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Propiedad eléctrica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Butyrique dérivé polymère</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Butyric derivative polymer</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Butírico derivado polímero</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Verre</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Glass</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Vidrio</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Caractéristique courant tension</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Voltage current curve</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Característica corriente tensión</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Travail sortie</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Work function</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Función de trabajo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Thiophène dérivé polymère</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Thiophene derivative polymer</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Tiofeno derivado polímero</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Or</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Gold</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Oro</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>6860B</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>7350</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>7361</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>220</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002826 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002826 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0323254
   |texte=   Organic photovoltaics using thin gold film as an alternative anode to indium tin oxide
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024